A Programming System for Blind and Low-Vision Novice
Programmers

Joshua G. Lock
joshua.lock@kcl.ac.uk
King’s College London

London, UK

Abstract

Most programming systems offer little or no support for blind
and low-vision programmers beyond the bare minimum offered by
screen readers—the translation of a spatial, visually rich, and graph-
ical user interface into a linear and ephemeral stream of narrated
speech.

This research aims to improve the educational experiences of
blind and low-vision novice programmers by designing a novel
“born accessible” programming system with auditory outputs and
keyboard inputs as the primary interaction model.

Keywords

Accessibility, Program editing, Novice programming

ACM Reference Format:

Joshua G. Lock. 2025. A Programming System for Blind and Low-Vision
Novice Programmers. In Proceedings of the 30th ACM Conference on Innova-
tion and Technology in Computer Science Education V. 2 (ITiCSE 2025), June
27-July 2, 2025, Nijmegen, Netherlands. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3724389.3731293

1 Context and Motivation

Learning to program is difficult. Novices must learn how to trans-
late their thoughts and ideas into program semantics, and then
map those program semantics into the programming system’s
representation—usually code in blocks or text. This is cognitively
demanding work at all levels of experience. Consequently, a sig-
nificant focus in the development of educational and professional
programming systems has been on using rich graphical interfaces
to improve program comprehension, navigation, and manipulation
outcomes to reduce the cognitive load on programmers.

These visual affordances are inaccessible to blind and low-vision
programmers who use screen readers to narrate computer interfaces
and their content. The rich visual cues of graphical programming
systems are lost in a screen reader’s translation to a linear audio
stream, and mouse-based direct manipulation is unworkable for
many of these users.

This linearisation of spatial graphical interfaces and program
code into a single, continuous and ephemeral audio stream—often
with confusing pronunciation that differs from how programmers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ITiCSE 2025, Nijmegen, Netherlands

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1569-3/2025/06

https://doi.org/10.1145/3724389.3731293

speak the same syntax—compounds the cognitively demanding
nature of programming for blind and low-vision programmers.

Our work aims to reduce the difficulties faced by blind and low-
vision programmers learning to program in order to enable more
equitable participation in programming education.

2 Background and Literature Review

Several researchers have tackled the challenge of making program-
ming systems more accessible to blind and low-vision novice pro-
grammers.

Work focused on improving text-based programming systems
for undergraduate and adult novices has been underway for several
years. Smith et al. [6] presented a system for use by undergradu-
ate novices which provides multiple levels of narration targeting
different levels of learner understanding and uses tone and empha-
sis in the synthesised speech to alert the programmer to special
tokens, similar to syntax colouring in visual editors. Stefik et al.
[8] proposed a programming language, compiler and debugging
architecture which narrates the logical, rather than spatial, context
of program code and provides additional context during narration
to help blind and low-vision programmers better understand code
and the runtime state of the program during debugging. Baker et al.
[1] demonstrate a system which helps blind and low-vision pro-
grammers more easily navigate the structure of a program to more
quickly gain an understanding of it, a design intended to replicate
a sighted programmer’s skim-reading and provide an alternative
to the typical end-to-end linear audio narration of screen readers.
Similar techniques were generalised to a programming language
independent toolkit by Schanzer et al. [5]

More recently, work has been done to make block-based pro-
gramming systems more accessible to blind and low-vision novices.
Milne and Ladner [3] identified challenges using block-based pro-
gramming environments on touchscreen devices, then implemented
and evaluated a design which uses audio and touch-based spatial
cues to improve code understanding. Mountapmbeme et al. [4]
modified the popular Blockly library, used to create browser-based
block-based programming environments, so that it uses the screen
reader as an alternative output channel and a keyboard as an al-
ternative input channel. The keyboard serves double duty as a
navigation and editing tool and consequently has separate modes,
with a virtual cursor to support moving the navigational focus of
the screen readers auditory narration without also changing the
edit location. Work by Stefik et al. [7] highlighted the need for
both inputs and outputs to be non-visually accessible and describes
implementing a block-based editor for the Quorum programming
system. The editor is designed to feel like a text-editor when oper-
ated purely with a keyboard and favours simple defaults, with more


https://orcid.org/0009-0009-9596-2002
https://doi.org/10.1145/3724389.3731293
https://doi.org/10.1145/3724389.3731293

ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands

advanced features available as novices become more comfortable
with the system.

3 Problem Statement

A gap remains in accessible programming systems for blind and
low-vision programmers at the secondary school or middle school
age. Children at this age are typically making the transition from
block-based programming systems to text-based programming sys-
tems, or beginning their programming education with text-based
programming systems. Children learning to program at this stage
of their education may still be getting used to using a computer
with keyboard and mouse, a task which becomes more challenging
for blind and low-vision children who are also learning how to
use accessibility technologies at the same time as learning to use a
computer and learning to program.

The frame-based editing paradigm introduced by Kélling et al.
[2] claims to ease the transition from blocks to text by offering a
highly visual, yet keyboard first, editing system. In the frame-based
paradigm, code writing is simplified by reducing the amount of
syntax programmers have to type, minimising errors, while code
comprehension is enhanced by the use of visual cues, including:
font formatting; semantic colouring of program text and interface
elements; and automatic white-space management to emphasise
keywords, scope, and structure.

Frame-based systems use a richer graphical vocabulary than
text-based systems. Initially, this seems to pose a higher risk of
being unusable to blind and low-vision programmers because there
are more elements to linearise. However, the underlying model of
frame-based editors—which separates program structure from its
representation—provides an opportunity to work on a program-
ming system’s structure and representation separately. Therefore,
we can improve the auditory representation independently of the
graphical representation. Instead of a linear representation of a spa-
tial graphical model, we will design an auditory first representation
which provides auditory equivalents of the visual navigation and
manipulation interactions of the frame-based paradigm in order to
bring equivalently simplified code writing to blind and low-vision
programimers.

Note that our goal of an auditory first representation does not
mean that we intend for blind and low-vision students to use alter-
native tools to their sighted peers. Programming is predominantly
a collaborative task, in both educational and professional settings,
and enabling equitable participation in mixed ability settings is
necessary to support collaboration and help seeking.

In short, the problem is that the gap in programming systems at
secondary school or middle school age is not bridged for blind and
low-vision programmers.

4 Research Goals

Through a participatory design process, our research aims to design
a user interface for a novice programming system with first-class
speech support, based on the frame-based paradigm, with improved
code navigation and manipulation interactions for blind and low-
vision programmers. We intend to implement core aspects of the
design within an existing frame-based educational programming

Joshua G. Lock

system to enable more equitable collaboration in mixed-ability
programming environments.

5 Research Methods

We will follow a participatory design process to achieve our re-
search goals. We have begun by using semi-structured interviews
to better understand the lived experiences of blind and low-vision
programmers during their programming education and in their
present programming practice. We will utilise the insights gained
through these interviews and a thorough review of the literature
to design an initial prototype, which we will discuss with willing
participants in follow-on interviews.

After a series of iterative design and refinement loops, with pro-
totyping to validate key aspects of the design, we will move onto
design and implementation within an existing educational program-
ming system. At this stage we intend to more formally evaluate the
implemented design with members of the target audience: blind and
low-vision programmers at secondary school or middle school who
are learning to program with text-based programming systems.

6 Contributions
We expect to make the following contributions:
¢ add to the understanding of challenges faced by blind and

low-vision novice programmers as they learn to program

o design solutions to address the challenges

e propose designs for mixed-ability settings that allow for
equitable vision-first and auditory-first collaboration

o validate the designs with a prototype implementation and
evaluation with blind and low-vision novice programmers.

References

[1] Catherine M. Baker, Lauren R. Milne, and Richard E. Ladner. 2015. Structjumper: A
Tool to Help Blind Programmers Navigate and Understand the Structure of Code.
In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems. Seoul Republic of Korea, 3043-3052. doi:10.1145/2702123.2702589

[2] Michael Kélling, Neil C. C. Brown, and Amjad Altadmri. 2015. Frame-Based Editing:
Easing the Transition from Blocks to Text-Based Programming. In Proceedings
of the Workshop in Primary and Secondary Computing Education. London United
Kingdom, 29-38. doi:10.1145/2818314.2818331

[3] Lauren R. Milne and Richard E. Ladner. 2018. Blocks4All: Overcoming Accessi-
bility Barriers to Blocks Programming for Children with Visual Impairments. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
Montreal QC Canada, 1-10. doi:10.1145/3173574.3173643

[4] Aboubakar Mountapmbeme, Obianuju Okafor, and Stephanie Ludi. 2022. Acces-
sible Blockly: An Accessible Block-Based Programming Library for People with
Visual Impairments. In Proceedings of the 24th International ACM SIGACCESS Con-
ference on Computers and Accessibility. Athens Greece, 1-15. doi:10.1145/3517428.
3544806

[5] Emmanuel Schanzer, Sina Bahram, and Shriram Krishnamurthi. 2019. Accessible
AST-Based Programming for Visually-Impaired Programmers. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education. Minneapolis
MN USA, 773-779. doi:10.1145/3287324.3287499

[6] Ann C. Smith, Joan M. Francioni, and Sam D. Matzek. 2000. A Java programming
tool for students with visual disabilities. In Proceedings of the fourth international
ACM conference on Assistive technologies. Arlington Virginia USA, 142-148. doi:10.
1145/354324.354356

[7] Andreas Stefik, Willliam Allee, Gabriel Contreras, Timothy Kluthe, Alex Hoffman,
Brianna Blaser, and Richard Ladner. 2024. Accessible to Whom? Bringing Accessi-
bility to Blocks. In Proceedings of the 55th ACM Technical Symposium on Computer
Science Education V. 1. Portland OR USA, 1286-1292. d0i:10.1145/3626252.3630770

[8] Andreas Stefik, Andrew Haywood, Shahzada Mansoor, Brock Dunda, and Daniel
Garcia. 2009. SODBeans. In 2009 IEEE 17th International Conference on Program
Comprehension. Vancouver, BC, Canada, 293-294. doi:10.1109/ICPC.2009.5090064


https://doi.org/10.1145/2702123.2702589
https://doi.org/10.1145/2818314.2818331
https://doi.org/10.1145/3173574.3173643
https://doi.org/10.1145/3517428.3544806
https://doi.org/10.1145/3517428.3544806
https://doi.org/10.1145/3287324.3287499
https://doi.org/10.1145/354324.354356
https://doi.org/10.1145/354324.354356
https://doi.org/10.1145/3626252.3630770
https://doi.org/10.1109/ICPC.2009.5090064

	Abstract
	1 Context and Motivation
	2 Background and Literature Review
	3 Problem Statement
	4 Research Goals
	5 Research Methods
	6 Contributions
	References

