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Abstract
Learning to program is often considered a difficult task, but this 
difficulty is multiplied for blind and low vision users, especially 
among young learners who may be learning about their assistive 
technologies (such as screen readers) alongside learning to program. 
In this position paper we argue that the entire paradigm of screen-
reading is a flawed way to construct an auditory interface for users 
with limited or no functional vision. We contend that block-like 
paradigms – despite historically being inaccessible – actually point 
towards a superior design where the abstract syntax tree is used 
to produce an auditory interface directly, rather than relying on 
reading out a plain-text rendering of the syntax tree. We believe 
that this can have benefits for learners and professionals alike.

CCS Concepts
• Human-centered computing → Accessibility; • Social and 
professional topics → Computing education; • Software and 
its engineering → Integrated and visual development envi-
ronments.
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1 Introduction
It is a cliché that every programming education paper begins “Learn-
ing to program is hard” [5, 9, 15]. However, it is even harder for 
blind and low vision users, who must perform the same learning 
in programming interfaces designed for sighted users, typically 
via assistive technologies. This challenge is increased again among 
young learners, who may be simultaneously learning to master the 
assistive technologies, while also trying to learn to program [19, 20].

One of the most common assistive technologies, especially among 
users with minimal or no functional vision [16], are screen readers. 
Screen readers have particularly awkward design incompatibilities 
with program code: they tend to not read out punctuation (which 
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can be vital for the meaning of program code), they deal awkwardly 
with white spaces for indentation, they read too much or too little 
of the code at once, and many programming tools (especially those 
designed for younger or novice learners) are inaccessible or have 
poor accessibility via screen readers. Furthermore, different screen 
readers (and different versions of the same screen reader) provide 
different presentations of the same code.

In this position paper we contend that the basic premise of read-
ing a screen full of textual program code produces a poor usability 
outcome for blind and low vision programmers, and that this poor 
performance is not the result of sub-optimal design of the software 
at hand, but an intrinsic problem of the screen-reading model on 
which these assistive programs are based. We examine many ways 
in which screen readers fail to meet the needs of such program-
mers, and then we argue for an alternative approach, built on the 
structured programming ideas of paradigms such as block-based 
and frame-based editing.

2 Background
To fully explain our argument, we must first provide some technical 
background on program code, then explain different levels of vision, 
before explaining the most common way that blind and low vision 
users interact with program code: screen readers. From this we can 
argue – backed by literature – why this is the wrong design, and 
offer an opinion on a better design.

2.1 Program code
There are multiple different possible representations of computer 
programs, such as flowcharts or data-flow programming. In this 
paper we are specifically interested in the most common set of 
representations: those that use an abstract syntax tree (AST) to 
form the internal representation of the program.

For text-based languages, such as Python, Java, C, etc, almost all 
developer tools (such as compilers, editors and IDEs) use an AST 
to facilitate their operation. This AST is derived from the plain-text 
source code using a parser. For example, 1 shows a simplified view 
of how a toolchain might translate some plain-text Python source 
code into an AST.

Block-based languages and some other editors, such as structure 
editors and projectional editors, aim to edit the AST directly rather 
than relying on a parser to derive it from a plain-text representation.

2.2 Human levels of vision
People can have a variety of levels or types of vision. Many users 
can see the entire screen, and read all text on the screen. Some types 
of vision, such as limited colour discrimination (colour blindness), 
have a relatively limited impact on the ability to interpret graphical 
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Figure 1: The left-hand side shows a simple snippet of source text. 
The right-hand side shows an AST representation of the same code.

user interfaces – mainly thanks to human interface design guide-
lines which suggest to avoid distinguishing attributes and states 
solely by colour to prevent these users experiencing difficulty1.

Other types of vision may range from being completely blind, to 
having restricted fields of view, blurry, or partially obscured vision. 
In most countries, legal blindness often includes the latter; this is 
contrary to common popular understanding which associates the 
term “blind” with the absence of any functional vision. In this paper 
we will primarily refer to blind (i.e. no or minimal functional vision) 
and low vision (i.e. heavily obscured sight, or unable to see details 
except with significant magnification), and will use the common 
acronym BLV – Blind and Low Vision – to refer to both groups 
together.

2.3 Screen readers
A variety of assistive technologies are available to computer users. 
In this paper we focus on screen readers, which are the most popular 
assistive technology among blind users (used by 95+% of blind or 
low vision users [16]) and commonly used by programmers, often 
alongside a Braille display. Albusays and Ludi [1] surveyed 69 BLV 
programmers, and found that the majority use a screen reader and 
almost half also use a Braille display, which can help supplement 
screen readers for detailed reading of program text [17].

Screen readers produce audio interpretations of a user interface. 
For graphical user interfaces, these interpretations must map spatial, 
two-dimensional interfaces into linear audio streams. Raman [25] 
compares the way a screen reader interprets a graphical user inter-
face to performing direct translations of native language phrases to 
a foreign language — not incorrect, but often somewhat awkward. 

1For example, see the ‘Inclusive Color’ guidance in Apple’s Human Interface Guide-
lines [12] and the ‘Accessibility Considerations’ in GNOME’s Human Interface Guide-
lines [23].

For example, if a screen reader switches focus to Microsoft Outlook 
for Mac, the VoiceOver screen reader will narrate the following2:

Outlook Inbox bullet username at domain dot tld win-
dow Message List table No selection.
You are currently on a table. To enter this table, press 
Control-Option-Shift-Down Arrow.

At this point, the user has the following options:

• have the screen reader read all content from the message list 
table (using the read all command — Ctrl+Option+A). This 
causes the screen reader to read the table from top-to-bottom, 
including the message age indicators (today, this week, etc) 
and the full contents of each email, or

• have the screen reader start reading one email at a time from 
the message list. This is achieved by navigating into the mes-
sage list (Ctrl+Option+Shift-Down Arrow) and navigating 
through messages (Ctrl+Option+Down or Ctrl+Option+Up).

These two options demonstrate how the screen reader translation 
of complex graphical interfaces often oscillates between presenting 
less information than would be available visually—as in when the 
application is first started—and presenting a stream of information 
that may be more than is desired—as in when trying to locate a 
recent email without wanting to listen to the full contents.

Screen readers can be particularly challenging for young learn-
ers, who may be learning simultaneously how to use assistive 
technologies—which are complex technologies with many key-
board sequences to memorise—and learning how to program, thus 
increasing the challenge compared to sighted learners. Some users 
of screen readers may receive no instruction on how to use their 
screen reader (especially in developing countries [26]), or are taught 
how to use them by non-expert sighted tutors, and thus may be 
unaware of the full range of features and may be using the screen 
reader in a suboptimal way.

The challenges of screen reader use can be further amplified by 
social aspects of the learning environment, for example in mixed 
visual-ability learning environments—where there are learners with 
different visual disabilities and those with no visual disabilities—
users of assistive technologies may be self-conscious of being ob-
served using their assistive technologies [29], particularly if the 
assistive technologies appear to make the task at hand harder than 
for their peers. Similarly, when those with sensory disabilities are 
provided separate tools with additional support for their sensory 
disability this can lead to feelings of othering and exclusion. Worse 
yet, learners with sensory disabilities may be completely excluded 
from learning due to their access needs being unsupported by the 
learning environment or technologies employed therein.

Screen readers look to provide a generic interface that is suitable 
for all applications. To achieve this, the APIs generally have knowl-
edge of common graphical user interface components: text fields, 
buttons, labels, date controls and so on. However, this is typically 
a finite set, and can prevent the use of novel interface controls or 
displays as might be used in novel programming interfaces. For 
example, a flowchart editor is not easy to represent to a screen-
reader [4] and, outside of programming, map displays have been 

2Using New Outlook for Mac version 16.98 on macOS Sequoia 15.5.
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found to be inaccessible by screen readers [10]. Modern GUI sys-
tems enable even custom interface controls to be made accessible 
– but this must be explicitly implemented by a programmer who 
both understands the need to make interface elements accessible 
and can provide useful accessibility cues [8].

2.4 Audio-first interfaces
Conversational interfaces, in which both input and output are en-
tirely in speech, are now well known and commonly used. Examples 
include voice assistants, such as Amazon’s Alexa[34] and Apple’s 
Siri. In this paper we are interested in audio output interfaces, where 
the input is performed with keyboard interactions rather than spo-
ken input, especially those which are suited to programming.

Raman [24] proposes that direct access to the application’s con-
text should be used to create an auditory first user interface on-par 
with the application’s visual interface. Such an auditory user inter-
face is implemented for Emacs in Emacspeak. Emacs is well suited 
as the basis for an auditory-first environment, as it is inherently 
extensible and has access to many “modes” which provide func-
tionality within Emacs equivalent to typical graphical applications 
for tasks such as email, calendaring, messaging, multimedia and 
programming. While this approach to auditory user interfaces has 
not become common in mainstream programming software, our 
proposal matches the intent to provide an auditory first interface 
as an equal peer to the graphical interface.

2.5 Historical patterns
Our literature survey, notably Raman [25], and discussions with 
BLV programmers gave us the sense that non-visual accessibility 
of computer applications was more successful before the ubiquity 
of graphical user interfaces (GUI). When interfaces were limited to 
a modest character display screen-reader technology was able to 
interpret and present the screen’s content to its user without any 
assistance from the application, operating system (OS), or interface 
toolkit being presented. With the introduction of graphical inter-
faces, the complexity of what a screen reader needs to translate and 
present increased significantly, resulting in a need for OSs and inter-
face toolkits to build-in features to expose data for a screen reader 
to present. Consequently, there was a period where GUIs were not
accessible to screen reader users while the requirements were un-
derstood and the OS and toolkit features were built. While things 
have improved in recent times, thanks to significant effort from 
OS and interface toolkit creators (see, for example, Fleizach and 
Bigham [8]), many applications still have poor or no accessibility 
to screen reader users.

Notably for our domain and informing our position, block-based 
programming systems perpetuated the common pattern of design-
ing a system, then figuring out whether and how to make it acces-
sible at a later time. The heavy reliance of block-based systems on 
mouse input harmed accessibility for screen reader users, and oth-
ers, even though we believe the fundamental model of block-based 
programming systems could improve accessibility.

3 Reading the screen is the wrong approach
The fundamental problem with screen readers is inherent in their 
name: they read the screen. Users without vision do not care that 

the screen exists. They would benefit from an optimal audio repre-
sentation of their program code — there is no need for it to relate 
to a screen. Using the screen representation as the structural basis 
for the audio output is very likely to lead to sub-optimal results.

For low vision or partial-vision users, who can see some aspects 
of the screen, it is more apparent why reading the screen might 
be useful, as it allows detail which cannot be visually accurately 
perceived to be filled in as needed. But even in these cases, it is 
only necessary to be able to easily relate the audio to the visual 
representation; it is not necessarily the case that they must follow 
the same order and give endless details on layout.

For program code specifically, the problem is shown on the left-
hand side of 2. A textual representation is used as the canonical 
representation, and from this the program code is parsed; but the 
screen reader is also based on the program text.

3.1 Speech ordering
Consider this Java code snippet:

1 public void setWidth(int w) {

2 this.width = w;

3 }

4 public void setHeight(int h) {

5 this.height = h;

6 }

7 public void setX(int x) {

8 this.x = x;

9 }

10 public void setY(int y) {

11 this.y = y;

12 }

Imagine a screen reader user wants to move down to the setY
method. The user begins by placing their text cursor at the start of 
the first line. The screen reader reads out “public void set width”; at 
the point the user hears the “width” part, they know they are on the 
wrong line and can press down to move to the next line, hear the 
method’s body being narrated, and continue to press down until 
they hit the next method definition. They then hear “public void 
set height” and on hearing “height” they press down again. By the 
time they reach the right line, they have heard “public void” four 
times, even though it is unrelated to their task, and heard at least 
partial narration of several other lines of code.

There are other solutions to this specific issue (e.g. a keyboard 
shortcut to jump to a method by name or the ‘find’ functionality) 
but the principle applies much more widely. There is a design prin-
ciple in accessibility guidelines called “front-loading”3: the most 
important or distinguishing text should be at the beginning of an 
item so that it is read first. This often does not correspond to the 
first token(s) on a particular line of program code.

Similar front-loading concepts in auditory representations of 
computer programs were evaluated for program comprehension 
during debugging [32][31]. Studies with sighted programmers sug-
gest promising improvements in accuracy of understanding when 
semantic information about the code is prioritised over syntactic 
information during presentation.

3See https://www.w3.org/WAI/wcag-curric/sam110-0.htm

https://www.w3.org/WAI/wcag-curric/sam110-0.htm
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Figure 2: (a) The traditional model of programming: The user produces program text; the AST and audio are both derived from the program 
text. (b) A model for improved representation: The user manipulates the AST; both the textual and the audio representations are derived 
from the AST.

3.2 Invisible punctuation
There is also the issue of punctuation. Program text uses punctua-
tion as vital tokens to assist the parsing of the code. For example, 
Python has colons at the end of many control statements. This is 
only to assist the parser, but (a) they have no semantic purpose 
and (b) punctuation is often not read out by screen readers. Tokens 
such as commas, periods, dashes, semi-colons and colons are read 
as pauses in speech, rather than explicitly read out. (Not to mention 
the issue of how they should be pronounced, which is a difficulty 
for novices [11] as well as screen readers [6].)

The Quorum programming language was specifically designed 
to alleviate this issue [33], by using words and layout for almost all 
syntax, instead of markers such as semi-colons and colons.

3.3 Indentation
The matter of invisible punctuation also applies to white-space, 
especially indentation. Indentation is either not read out by the 
screen reader or read out awkwardly, making it doubly problematic 
for screen-reader users. First, it is useless as a way to indicate 
program structure (either by convention as in Java, or as a strict 
meaning in Python) to a person reliant on a screen reader. Second, 
it makes it particularly awkward for a screen reader user to manage 
indentation and make it correct (again, either for convention in 
Java or as required in Python).

In the case where it is convention, tools such as “prettifiers” 
(auto-formatters) can solve this problem automatically, but (a) it 
seems odd to manage manually if it can be done automatically and 
(b) this is not possible in indentation-based languages like Python 
where the user must set the indent to determine the structure and 
indentation cannot be inferred (though auto-formatters can ensure 
consistent use of indentation). For indentation-based languages the 
program editor can help manage indentation, for example retaining 
the current level of indentation and increasing/decreasing indenta-
tion level intelligently when certain syntax (a colon) or semantic 
conventions (two or more carriage returns) are encountered, but 

even such intelligent editing is not always correct and must be 
managed by the programmer.

Albusays et al. [2] point out that when indentation is read out, 
it is done in a non-helpful way for programmers:

When a screen reader user navigates through inden-
tation based languages, [they] will hear [their] screen 
reader verbalizing whitespaces as a single space (e.g., 
“space, space, space”) rather than a count (“three spaces”)

Several programmers that Albusays et al. interviewed had in-
dependently customised their screen reader to produce the latter 
behaviour, while others used a Braille reader to help determine 
indentation levels.

3.4 Confusing values
An additional challenge of reading program text is that different 
program text may be narrated the same way. For example, different 
values can be read the same way by a screen reader, even when 
those values have different data types. In the following Java code4:

1 baa = 7;

2 bah = "7";

3 bar = "seven";

The values 7, “7”, and “seven” will be narrated the same way — 
spoken as the word “seven” — by standard screen readers, and yet 
the values are syntactically and semantically different. An expe-
rienced programmer may be able to intuit the difference, at least 
enough to use character-by-character inspection to confirm their 
suspicion, but for novices this difference in presentation is likely to 
cause confusion.

Schanzer et al. [27] solve this problem by having their envi-
ronment narrate the types of the non-number values and further 
disambiguates numerals in a string, as in "7", and the written num-
ber, as in "seven", by switching to a verbose mode and reading out 
the written form character-by-character. Building on the “semantic 

4Based on a similar example given by Schanzer et al. [27].
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prioritization” work of Stefik et al. [32][31], their system reads out 
the type after the value itself, for example for the value of bah
the system would read “seven, a string”. (This is also an example 
of front-loading, with the most semantically-distinguishing value 
first.)

3.5 Different modes of reading
In practice, sighted programmers employ a host of different reading 
strategies at different phases in their work. They may be skim-
reading a program, focusing mainly on names of high-level struc-
turing entities (such as classes or functions). They may be reading 
for program comprehension, trying to work out what a segment of 
code does or how it does it. Or they may be engaged in a debugging 
task, paying attention to every single character.

All these modes of reading are supported in various ways in the 
visual interfaces of modern editors. Syntax highlighting, using both 
font faces and colour, and layout conventions support skimming a 
program. Keywords are highlighted to support semantic reading 
of code. Yet all characters are available for inspection to support 
debugging.

Common screen readers struggle to support these different read-
ing modes, instead providing a simplistic all-or-nothing linearisa-
tion of the text.

In a text-based program editor, a screen reader typically starts 
by reading the content linearly, starting on the first line (or at 
the current cursor position) and proceeding until the end, unless 
interrupted. Though there has been some research into improv-
ing skim-reading and navigation interfaces—through adapting the 
programming system to screen reader affordances [3] and through 
supplementing the screen reader with dedicated tactile hardware [7] 
or standard laptop trackpads [28]—this all-or-nothing linearisation 
remains the standard way that text content is narrated by screen 
readers.

In practice, many BLV programmers do not let their screen reader 
narrate in this way and instead rely on a combination of search 
functionality to locate key sections—such as class and function 
definitions and waypoint function names, such as main—and using 
detailed, line-by-line, narration of the program text.

3.6 Different code style preferences
The fundamental problem, broken down and described through-
out this section, is emphasised by the often significantly differing 
code style preferences of BLV programmers compared to sighted 
programmers when working on text-based code, often requiring 
one visual-ability group of developers to compromise on their code 
style preferences in the name of collaboration. For example, Pandey 
et al. [22] found that, when working with Python, the formatting 
preferences of BLV programmers differ in 8 of 13 code styling prac-
tices from the styling practices favoured by sighted developers as 
enshrined in documentation5 and with tooling6 as the conventional 
practices for the Python programming language ecosystem.

5In PEP 8: https://peps.python.org/pep-0008/
6With Pycodestyle: https://pycodestyle.pycqa.org/en/latest/intro.html and also Black: 
https://black.readthedocs.io/en/stable/index.html

4 Audio should come from the AST, not text
Our suggested approach stems from the right-hand side of 2. The 
AST should be treated as the canonical representation (which is al-
ready true for editing paradigms such as block-based programming), 
and crucially, the audio presentation should be derived directly from 
the AST, without necessarily mapping to the visual presentation 
with 100% fidelity.

An AST-derived audio presentation need not present whitespace 
and punctuation, completely bypassing the “invisible punctuation” 
constraint of present day screen readers. When punctuation is 
meaningful in a text-based language, such as the dot operator when 
accessing members of a class or structure, it can be presented aurally 
in a more semantically meaningful way. For example, the name
member of a student class could be presented as “name of student” 
or “student member name” instead of “student dot name”.

For example, the setWidth method definition from the earlier 
code sample might be presented aurally as:

setWidth public method takes w, an int
width member assigned w

By deriving the audio presentation from the AST we avoid the 
problems of invisible punctuation and indentation, because these be-
come aspects of the presentation rather than elements of the code’s 
representation, while opening up a rich design space to explore 
and evaluate novel—auditory-first—approaches to the problems of 
linearisation, speech ordering, and confusing values.

All of the semantic information is presented in this example, yet 
it is not reading the program syntax. Different design decisions 
could be taken over exact wording, ordering and terminology, but 
the basic idea is: the speech should be derived from the AST, not 
from the textual representation of the AST.

4.1 Mixed visual-ability collaboration
While an audio presentation need not map 100% to the visual pre-
sentation, it is important that the two presentations are equivalent, 
for example sharing referents (such as line numbers, or similar), in 
order to facilitate collaboration amongst peers, and between pupil 
and teacher, and to foster a greater sense of solidarity and mutuality 
among peers of all visual-abilities.

We are not suggesting a complete break between the representa-
tions: obviously a visual and auditory representation of the same 
code will be similar. But our argument is that they do not need to 
be dogmatically identical if it interferes with understanding. Once 
familiar with one representation it would not be difficult to derive 
or understand the other, which would enable collaboration.

4.2 Accessible block-based editing
The initial versions of block-based editors were inaccessible for mul-
tiple different reasons. Ludi [14] pointed out ten years ago that the 
visual and mouse-centric design of block-based programming sys-
tems makes them largely inaccessible to BLV programmers. Milne 
and Ladner [18] further emphasised how block-based programming 
systems are inaccessible to screen reader users because the shapes 
and colours of the blocks are not typically spoken by the screen 
reader, and spatial relationships are verbose to describe and often 
meaningless to BLV programmers. Milne and Ladner’s focus was 

https://peps.python.org/pep-0008/
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improving the accessibility of block-based environments on touch-
screen devices—by developing touchscreen interactions to help 
identify blocks and their types, move blocks around, and convey 
program structure—however, many of the design guidelines in the 
paper are not specific to touchscreens or block-based editors and 
may be applicable to other accessible programming environments.

The challenges of making block-based editors accessible to screen-
readers was two-fold: keyboard support was needed for all naviga-
tion and editor interactions, and it was necessary to find a way to 
represent the novel user interface paradigm to screen readers.

In order to enable the keyboard as a mouse alternative for block-
based environments Mountapmbeme et al. [21] added a virtual 
cursor mode to Blockly, enabling users to navigate without chang-
ing the edit location. A corresponding screen reader module outputs 
speech to describe the focused element at the virtual cursor’s lo-
cation. Combined, these enhancements led to increased speed and 
accuracy of navigation and understanding tasks for BLV program-
mers.

Recently, Stefik et al. [30] created Quorum Blocks, with an ac-
cessible block-based editor (and impressive contributions beyond 
in the field of accessible graphics output which are beyond the 
scope of this paper). This paper produced a new block-based editor 
specifically designed to be accessible to the visually impaired via 
screen-readers, which took several ideas from previous research 
and also from frame-based editing which we will consider next.

4.3 Frame-based editing
Frame-based editing is designed to combine the strengths of block-
based editing and text-based editing to provide improved error 
reduction and faster program manipulation in text-like program-
ming languages[13]. We believe that frame-based editing provides 
a solid foundation upon which to build accessible program editors. 
The frame-based editing paradigm is text-like, enabling harmonious 
first-class integration with speech synthesis, and keyboard driven, 
meaning that manipulation interactions are more accessible for 
BLV users.

Because in frame-based editing the interface presents an AST-
like representation of the program structure, not program text, a 
frame-based editor is better able to refine the presentation of pro-
gram code for an auditory interface paradigm, even if those same 
refinements are not represented in the visual interface. Addition-
ally, the “frame cursor” in the frame-based paradigm — used for 
insertion and manipulation of syntax nodes — provides a locus of 
focus for the user, somewhat analogous to the virtual cursor later 
added to Blockly [21], which helps users understand what type 
of manipulation actions are available, where their manipulation 
actions will manifest, and affords an opportunity to present the 
code differently than when using the text cursor to do detailed 
editing of program statements.

Furthermore, the frame-based paradigm supports a rich graphical 
interface which we believe can run in-tandem with a rich auditory 
first interface and enable equitable collaboration between BLV and 
sighted collaborators.

5 Conclusion
Screen readers read what is on the screen, but even when applica-
tions correctly permit this, the screen-based presentation may not 
suit the task at hand. For programming learners we believe that 
we can and should do better. Separating program structure from 
its representation—as in block-based, frame-based and structure 
editing—provides an opportunity to create first-class auditory inter-
faces with greater affordances for the ephemeral and linear nature 
of audio. Careful design consideration should be given to ordering 
and wording of the audio representation of code, rather than just 
reading out the textual syntax presentation.

Keyboard-based manipulation of the AST, without the need to 
type out all syntax, allows for a more accessible input. Keyboards 
are generally more accessible by users with all kinds of impairments 
than mice, which involve careful and precise aiming of the cursor 
that is not possible by many people. The keyboard entry in systems 
such as frame-based editors can also reduce the amount of syntax 
that must be memorised and the amount of typing required to 
translate intent to program code, which is both more accessible and 
potentially faster for learners.

In a frame-based editor, specifically, the user will not need to 
manage whitespace or punctuation and will need to use fewer 
keystrokes to insert code. In future work we will explore the suit-
ability of frame-based editors as a foundation to build a “born-
accessible” program editor with first-class audio presentation and 
keyboard driven interactions.
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