
Programming Education for Blind and Low Vision Users: Beyond
Reading the Screen

Joshua G. Lock
joshua.lock@kcl.ac.uk
King’s College London

London UK

Neil C. C. Brown
neil.c.c.brown@kcl.ac.uk
King’s College London

London UK

Michael Kölling
michael.kolling@kcl.ac.uk

King’s College London
London UK

Abstract
Learning to program is often considered a difficult task, but this
difficulty is multiplied for blind and low vision users, especially
among young learners who may be learning about their assistive
technologies (such as screen readers) alongside learning to program.
In this position paper we argue that the entire paradigm of screen-
reading is a flawed way to construct an auditory interface for users
with limited or no functional vision. We contend that block-like
paradigms – despite historically being inaccessible – actually point
towards a superior design where the abstract syntax tree is used
to produce an auditory interface directly, rather than relying on
reading out a plain-text rendering of the syntax tree. We believe
that this can have benefits for learners and professionals alike.

CCS Concepts
• Human-centered computing → Accessibility; • Social and
professional topics → Computing education; • Software and
its engineering → Integrated and visual development envi-
ronments.

Keywords
Non-visual accessibility, Programming education, Program editing
ACM Reference Format:
Joshua G. Lock, Neil C. C. Brown, and Michael Kölling. 2025. Programming
Education for Blind and Low Vision Users: Beyond Reading the Screen. In
25th Koli Calling International Conference on Computing Education Research
(Koli Calling ’25), November 11–16, 2025, Koli, Finland. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3769994.3770018

1 Introduction
It is a cliché that every programming education paper begins “Learn-
ing to program is hard” [5, 9, 15]. However, it is even harder for
blind and low vision users, who must perform the same learning
in programming interfaces designed for sighted users, typically
via assistive technologies. This challenge is increased again among
young learners, who may be simultaneously learning to master the
assistive technologies, while also trying to learn to program [19, 20].

One of the most common assistive technologies, especially among
users with minimal or no functional vision [16], are screen readers.
Screen readers have particularly awkward design incompatibilities
with program code: they tend to not read out punctuation (which

This work is licensed under a Creative Commons Attribution 4.0 International License.
Koli Calling ’25, Koli, Finland
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1599-0/25/11
https://doi.org/10.1145/3769994.3770018

can be vital for the meaning of program code), they deal awkwardly
with white spaces for indentation, they read too much or too little
of the code at once, and many programming tools (especially those
designed for younger or novice learners) are inaccessible or have
poor accessibility via screen readers. Furthermore, different screen
readers (and different versions of the same screen reader) provide
different presentations of the same code.

In this position paper we contend that the basic premise of read-
ing a screen full of textual program code produces a poor usability
outcome for blind and low vision programmers, and that this poor
performance is not the result of sub-optimal design of the software
at hand, but an intrinsic problem of the screen-reading model on
which these assistive programs are based. We examine many ways
in which screen readers fail to meet the needs of such program-
mers, and then we argue for an alternative approach, built on the
structured programming ideas of paradigms such as block-based
and frame-based editing.

2 Background
To fully explain our argument, we must first provide some technical
background on program code, then explain different levels of vision,
before explaining the most common way that blind and low vision
users interact with program code: screen readers. From this we can
argue – backed by literature – why this is the wrong design, and
offer an opinion on a better design.

2.1 Program code
There are multiple different possible representations of computer
programs, such as flowcharts or data-flow programming. In this
paper we are specifically interested in the most common set of
representations: those that use an abstract syntax tree (AST) to
form the internal representation of the program.

For text-based languages, such as Python, Java, C, etc, almost all
developer tools (such as compilers, editors and IDEs) use an AST
to facilitate their operation. This AST is derived from the plain-text
source code using a parser. For example, 1 shows a simplified view
of how a toolchain might translate some plain-text Python source
code into an AST.

Block-based languages and some other editors, such as structure
editors and projectional editors, aim to edit the AST directly rather
than relying on a parser to derive it from a plain-text representation.

2.2 Human levels of vision
People can have a variety of levels or types of vision. Many users
can see the entire screen, and read all text on the screen. Some types
of vision, such as limited colour discrimination (colour blindness),
have a relatively limited impact on the ability to interpret graphical

https://orcid.org/0009-0009-9596-2002
https://orcid.org/0000-0001-6086-2479
https://orcid.org/0000-0003-0544-2003

LaTeX formula starts \begin {math} ^1 \end {math} LaTeX formula ends

https://doi.org/10.1145/3769994.3770018
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3769994.3770018

Koli Calling ’25, November 11–16, 2025, Koli, Finland Joshua G. Lock, Neil C. C. Brown, and Michael Kölling

Figure 1: The left-hand side shows a simple snippet of source text.
The right-hand side shows an AST representation of the same code.

user interfaces – mainly thanks to human interface design guide-
lines which suggest to avoid distinguishing attributes and states
solely by colour to prevent these users experiencing difficulty1.

Other types of vision may range from being completely blind, to
having restricted fields of view, blurry, or partially obscured vision.
In most countries, legal blindness often includes the latter; this is
contrary to common popular understanding which associates the
term “blind” with the absence of any functional vision. In this paper
we will primarily refer to blind (i.e. no or minimal functional vision)
and low vision (i.e. heavily obscured sight, or unable to see details
except with significant magnification), and will use the common
acronym BLV – Blind and Low Vision – to refer to both groups
together.

2.3 Screen readers
A variety of assistive technologies are available to computer users.
In this paper we focus on screen readers, which are the most popular
assistive technology among blind users (used by 95+% of blind or
low vision users [16]) and commonly used by programmers, often
alongside a Braille display. Albusays and Ludi [1] surveyed 69 BLV
programmers, and found that the majority use a screen reader and
almost half also use a Braille display, which can help supplement
screen readers for detailed reading of program text [17].

Screen readers produce audio interpretations of a user interface.
For graphical user interfaces, these interpretations must map spatial,
two-dimensional interfaces into linear audio streams. Raman [25]
compares the way a screen reader interprets a graphical user inter-
face to performing direct translations of native language phrases to
a foreign language — not incorrect, but often somewhat awkward.

1For example, see the ‘Inclusive Color’ guidance in Apple’s Human Interface Guide-
lines [12] and the ‘Accessibility Considerations’ in GNOME’s Human Interface Guide-
lines [23].

For example, if a screen reader switches focus to Microsoft Outlook
for Mac, the VoiceOver screen reader will narrate the following2:

Outlook Inbox bullet username at domain dot tld win-
dow Message List table No selection.
You are currently on a table. To enter this table, press
Control-Option-Shift-Down Arrow.

At this point, the user has the following options:

• have the screen reader read all content from the message list
table (using the read all command — Ctrl+Option+A). This
causes the screen reader to read the table from top-to-bottom,
including the message age indicators (today, this week, etc)
and the full contents of each email, or

• have the screen reader start reading one email at a time from
the message list. This is achieved by navigating into the mes-
sage list (Ctrl+Option+Shift-Down Arrow) and navigating
through messages (Ctrl+Option+Down or Ctrl+Option+Up).

These two options demonstrate how the screen reader translation
of complex graphical interfaces often oscillates between presenting
less information than would be available visually—as in when the
application is first started—and presenting a stream of information
that may be more than is desired—as in when trying to locate a
recent email without wanting to listen to the full contents.

Screen readers can be particularly challenging for young learn-
ers, who may be learning simultaneously how to use assistive
technologies—which are complex technologies with many key-
board sequences to memorise—and learning how to program, thus
increasing the challenge compared to sighted learners. Some users
of screen readers may receive no instruction on how to use their
screen reader (especially in developing countries [26]), or are taught
how to use them by non-expert sighted tutors, and thus may be
unaware of the full range of features and may be using the screen
reader in a suboptimal way.

The challenges of screen reader use can be further amplified by
social aspects of the learning environment, for example in mixed
visual-ability learning environments—where there are learners with
different visual disabilities and those with no visual disabilities—
users of assistive technologies may be self-conscious of being ob-
served using their assistive technologies [29], particularly if the
assistive technologies appear to make the task at hand harder than
for their peers. Similarly, when those with sensory disabilities are
provided separate tools with additional support for their sensory
disability this can lead to feelings of othering and exclusion. Worse
yet, learners with sensory disabilities may be completely excluded
from learning due to their access needs being unsupported by the
learning environment or technologies employed therein.

Screen readers look to provide a generic interface that is suitable
for all applications. To achieve this, the APIs generally have knowl-
edge of common graphical user interface components: text fields,
buttons, labels, date controls and so on. However, this is typically
a finite set, and can prevent the use of novel interface controls or
displays as might be used in novel programming interfaces. For
example, a flowchart editor is not easy to represent to a screen-
reader [4] and, outside of programming, map displays have been

2Using New Outlook for Mac version 16.98 on macOS Sequoia 15.5.

Programming Education for Blind and Low Vision Users: Beyond Reading the Screen Koli Calling ’25, November 11–16, 2025, Koli, Finland

found to be inaccessible by screen readers [10]. Modern GUI sys-
tems enable even custom interface controls to be made accessible
– but this must be explicitly implemented by a programmer who
both understands the need to make interface elements accessible
and can provide useful accessibility cues [8].

2.4 Audio-first interfaces
Conversational interfaces, in which both input and output are en-
tirely in speech, are now well known and commonly used. Examples
include voice assistants, such as Amazon’s Alexa[34] and Apple’s
Siri. In this paper we are interested in audio output interfaces, where
the input is performed with keyboard interactions rather than spo-
ken input, especially those which are suited to programming.

Raman [24] proposes that direct access to the application’s con-
text should be used to create an auditory first user interface on-par
with the application’s visual interface. Such an auditory user inter-
face is implemented for Emacs in Emacspeak. Emacs is well suited
as the basis for an auditory-first environment, as it is inherently
extensible and has access to many “modes” which provide func-
tionality within Emacs equivalent to typical graphical applications
for tasks such as email, calendaring, messaging, multimedia and
programming. While this approach to auditory user interfaces has
not become common in mainstream programming software, our
proposal matches the intent to provide an auditory first interface
as an equal peer to the graphical interface.

2.5 Historical patterns
Our literature survey, notably Raman [25], and discussions with
BLV programmers gave us the sense that non-visual accessibility
of computer applications was more successful before the ubiquity
of graphical user interfaces (GUI). When interfaces were limited to
a modest character display screen-reader technology was able to
interpret and present the screen’s content to its user without any
assistance from the application, operating system (OS), or interface
toolkit being presented. With the introduction of graphical inter-
faces, the complexity of what a screen reader needs to translate and
present increased significantly, resulting in a need for OSs and inter-
face toolkits to build-in features to expose data for a screen reader
to present. Consequently, there was a period where GUIs were not
accessible to screen reader users while the requirements were un-
derstood and the OS and toolkit features were built. While things
have improved in recent times, thanks to significant effort from
OS and interface toolkit creators (see, for example, Fleizach and
Bigham [8]), many applications still have poor or no accessibility
to screen reader users.

Notably for our domain and informing our position, block-based
programming systems perpetuated the common pattern of design-
ing a system, then figuring out whether and how to make it acces-
sible at a later time. The heavy reliance of block-based systems on
mouse input harmed accessibility for screen reader users, and oth-
ers, even though we believe the fundamental model of block-based
programming systems could improve accessibility.

3 Reading the screen is the wrong approach
The fundamental problem with screen readers is inherent in their
name: they read the screen. Users without vision do not care that

the screen exists. They would benefit from an optimal audio repre-
sentation of their program code — there is no need for it to relate
to a screen. Using the screen representation as the structural basis
for the audio output is very likely to lead to sub-optimal results.

For low vision or partial-vision users, who can see some aspects
of the screen, it is more apparent why reading the screen might
be useful, as it allows detail which cannot be visually accurately
perceived to be filled in as needed. But even in these cases, it is
only necessary to be able to easily relate the audio to the visual
representation; it is not necessarily the case that they must follow
the same order and give endless details on layout.

For program code specifically, the problem is shown on the left-
hand side of 2. A textual representation is used as the canonical
representation, and from this the program code is parsed; but the
screen reader is also based on the program text.

3.1 Speech ordering
Consider this Java code snippet:

1 public void setWidth(int w) {

2 this.width = w;

3 }

4 public void setHeight(int h) {

5 this.height = h;

6 }

7 public void setX(int x) {

8 this.x = x;

9 }

10 public void setY(int y) {

11 this.y = y;

12 }

Imagine a screen reader user wants to move down to the setY
method. The user begins by placing their text cursor at the start of
the first line. The screen reader reads out “public void set width”; at
the point the user hears the “width” part, they know they are on the
wrong line and can press down to move to the next line, hear the
method’s body being narrated, and continue to press down until
they hit the next method definition. They then hear “public void
set height” and on hearing “height” they press down again. By the
time they reach the right line, they have heard “public void” four
times, even though it is unrelated to their task, and heard at least
partial narration of several other lines of code.

There are other solutions to this specific issue (e.g. a keyboard
shortcut to jump to a method by name or the ‘find’ functionality)
but the principle applies much more widely. There is a design prin-
ciple in accessibility guidelines called “front-loading”3: the most
important or distinguishing text should be at the beginning of an
item so that it is read first. This often does not correspond to the
first token(s) on a particular line of program code.

Similar front-loading concepts in auditory representations of
computer programs were evaluated for program comprehension
during debugging [32][31]. Studies with sighted programmers sug-
gest promising improvements in accuracy of understanding when
semantic information about the code is prioritised over syntactic
information during presentation.

3See https://www.w3.org/WAI/wcag-curric/sam110-0.htm

https://www.w3.org/WAI/wcag-curric/sam110-0.htm

Koli Calling ’25, November 11–16, 2025, Koli, Finland Joshua G. Lock, Neil C. C. Brown, and Michael Kölling

Figure 2: (a) The traditional model of programming: The user produces program text; the AST and audio are both derived from the program
text. (b) A model for improved representation: The user manipulates the AST; both the textual and the audio representations are derived
from the AST.

3.2 Invisible punctuation
There is also the issue of punctuation. Program text uses punctua-
tion as vital tokens to assist the parsing of the code. For example,
Python has colons at the end of many control statements. This is
only to assist the parser, but (a) they have no semantic purpose
and (b) punctuation is often not read out by screen readers. Tokens
such as commas, periods, dashes, semi-colons and colons are read
as pauses in speech, rather than explicitly read out. (Not to mention
the issue of how they should be pronounced, which is a difficulty
for novices [11] as well as screen readers [6].)

The Quorum programming language was specifically designed
to alleviate this issue [33], by using words and layout for almost all
syntax, instead of markers such as semi-colons and colons.

3.3 Indentation
The matter of invisible punctuation also applies to white-space,
especially indentation. Indentation is either not read out by the
screen reader or read out awkwardly, making it doubly problematic
for screen-reader users. First, it is useless as a way to indicate
program structure (either by convention as in Java, or as a strict
meaning in Python) to a person reliant on a screen reader. Second,
it makes it particularly awkward for a screen reader user to manage
indentation and make it correct (again, either for convention in
Java or as required in Python).

In the case where it is convention, tools such as “prettifiers”
(auto-formatters) can solve this problem automatically, but (a) it
seems odd to manage manually if it can be done automatically and
(b) this is not possible in indentation-based languages like Python
where the user must set the indent to determine the structure and
indentation cannot be inferred (though auto-formatters can ensure
consistent use of indentation). For indentation-based languages the
program editor can help manage indentation, for example retaining
the current level of indentation and increasing/decreasing indenta-
tion level intelligently when certain syntax (a colon) or semantic
conventions (two or more carriage returns) are encountered, but

even such intelligent editing is not always correct and must be
managed by the programmer.

Albusays et al. [2] point out that when indentation is read out,
it is done in a non-helpful way for programmers:

When a screen reader user navigates through inden-
tation based languages, [they] will hear [their] screen
reader verbalizing whitespaces as a single space (e.g.,
“space, space, space”) rather than a count (“three spaces”)

Several programmers that Albusays et al. interviewed had in-
dependently customised their screen reader to produce the latter
behaviour, while others used a Braille reader to help determine
indentation levels.

3.4 Confusing values
An additional challenge of reading program text is that different
program text may be narrated the same way. For example, different
values can be read the same way by a screen reader, even when
those values have different data types. In the following Java code4:

1 baa = 7;

2 bah = "7";

3 bar = "seven";

The values 7, “7”, and “seven” will be narrated the same way —
spoken as the word “seven” — by standard screen readers, and yet
the values are syntactically and semantically different. An expe-
rienced programmer may be able to intuit the difference, at least
enough to use character-by-character inspection to confirm their
suspicion, but for novices this difference in presentation is likely to
cause confusion.

Schanzer et al. [27] solve this problem by having their envi-
ronment narrate the types of the non-number values and further
disambiguates numerals in a string, as in "7", and the written num-
ber, as in "seven", by switching to a verbose mode and reading out
the written form character-by-character. Building on the “semantic

4Based on a similar example given by Schanzer et al. [27].

Programming Education for Blind and Low Vision Users: Beyond Reading the Screen Koli Calling ’25, November 11–16, 2025, Koli, Finland

prioritization” work of Stefik et al. [32][31], their system reads out
the type after the value itself, for example for the value of bah
the system would read “seven, a string”. (This is also an example
of front-loading, with the most semantically-distinguishing value
first.)

3.5 Different modes of reading
In practice, sighted programmers employ a host of different reading
strategies at different phases in their work. They may be skim-
reading a program, focusing mainly on names of high-level struc-
turing entities (such as classes or functions). They may be reading
for program comprehension, trying to work out what a segment of
code does or how it does it. Or they may be engaged in a debugging
task, paying attention to every single character.

All these modes of reading are supported in various ways in the
visual interfaces of modern editors. Syntax highlighting, using both
font faces and colour, and layout conventions support skimming a
program. Keywords are highlighted to support semantic reading
of code. Yet all characters are available for inspection to support
debugging.

Common screen readers struggle to support these different read-
ing modes, instead providing a simplistic all-or-nothing linearisa-
tion of the text.

In a text-based program editor, a screen reader typically starts
by reading the content linearly, starting on the first line (or at
the current cursor position) and proceeding until the end, unless
interrupted. Though there has been some research into improv-
ing skim-reading and navigation interfaces—through adapting the
programming system to screen reader affordances [3] and through
supplementing the screen reader with dedicated tactile hardware [7]
or standard laptop trackpads [28]—this all-or-nothing linearisation
remains the standard way that text content is narrated by screen
readers.

In practice, many BLV programmers do not let their screen reader
narrate in this way and instead rely on a combination of search
functionality to locate key sections—such as class and function
definitions and waypoint function names, such as main—and using
detailed, line-by-line, narration of the program text.

3.6 Different code style preferences
The fundamental problem, broken down and described through-
out this section, is emphasised by the often significantly differing
code style preferences of BLV programmers compared to sighted
programmers when working on text-based code, often requiring
one visual-ability group of developers to compromise on their code
style preferences in the name of collaboration. For example, Pandey
et al. [22] found that, when working with Python, the formatting
preferences of BLV programmers differ in 8 of 13 code styling prac-
tices from the styling practices favoured by sighted developers as
enshrined in documentation5 and with tooling6 as the conventional
practices for the Python programming language ecosystem.

5In PEP 8: https://peps.python.org/pep-0008/
6With Pycodestyle: https://pycodestyle.pycqa.org/en/latest/intro.html and also Black:
https://black.readthedocs.io/en/stable/index.html

4 Audio should come from the AST, not text
Our suggested approach stems from the right-hand side of 2. The
AST should be treated as the canonical representation (which is al-
ready true for editing paradigms such as block-based programming),
and crucially, the audio presentation should be derived directly from
the AST, without necessarily mapping to the visual presentation
with 100% fidelity.

An AST-derived audio presentation need not present whitespace
and punctuation, completely bypassing the “invisible punctuation”
constraint of present day screen readers. When punctuation is
meaningful in a text-based language, such as the dot operator when
accessing members of a class or structure, it can be presented aurally
in a more semantically meaningful way. For example, the name
member of a student class could be presented as “name of student”
or “student member name” instead of “student dot name”.

For example, the setWidth method definition from the earlier
code sample might be presented aurally as:

setWidth public method takes w, an int
width member assigned w

By deriving the audio presentation from the AST we avoid the
problems of invisible punctuation and indentation, because these be-
come aspects of the presentation rather than elements of the code’s
representation, while opening up a rich design space to explore
and evaluate novel—auditory-first—approaches to the problems of
linearisation, speech ordering, and confusing values.

All of the semantic information is presented in this example, yet
it is not reading the program syntax. Different design decisions
could be taken over exact wording, ordering and terminology, but
the basic idea is: the speech should be derived from the AST, not
from the textual representation of the AST.

4.1 Mixed visual-ability collaboration
While an audio presentation need not map 100% to the visual pre-
sentation, it is important that the two presentations are equivalent,
for example sharing referents (such as line numbers, or similar), in
order to facilitate collaboration amongst peers, and between pupil
and teacher, and to foster a greater sense of solidarity and mutuality
among peers of all visual-abilities.

We are not suggesting a complete break between the representa-
tions: obviously a visual and auditory representation of the same
code will be similar. But our argument is that they do not need to
be dogmatically identical if it interferes with understanding. Once
familiar with one representation it would not be difficult to derive
or understand the other, which would enable collaboration.

4.2 Accessible block-based editing
The initial versions of block-based editors were inaccessible for mul-
tiple different reasons. Ludi [14] pointed out ten years ago that the
visual and mouse-centric design of block-based programming sys-
tems makes them largely inaccessible to BLV programmers. Milne
and Ladner [18] further emphasised how block-based programming
systems are inaccessible to screen reader users because the shapes
and colours of the blocks are not typically spoken by the screen
reader, and spatial relationships are verbose to describe and often
meaningless to BLV programmers. Milne and Ladner’s focus was

https://peps.python.org/pep-0008/
https://pycodestyle.pycqa.org/en/latest/intro.html
https://black.readthedocs.io/en/stable/index.html

Koli Calling ’25, November 11–16, 2025, Koli, Finland Joshua G. Lock, Neil C. C. Brown, and Michael Kölling

improving the accessibility of block-based environments on touch-
screen devices—by developing touchscreen interactions to help
identify blocks and their types, move blocks around, and convey
program structure—however, many of the design guidelines in the
paper are not specific to touchscreens or block-based editors and
may be applicable to other accessible programming environments.

The challenges of making block-based editors accessible to screen-
readers was two-fold: keyboard support was needed for all naviga-
tion and editor interactions, and it was necessary to find a way to
represent the novel user interface paradigm to screen readers.

In order to enable the keyboard as a mouse alternative for block-
based environments Mountapmbeme et al. [21] added a virtual
cursor mode to Blockly, enabling users to navigate without chang-
ing the edit location. A corresponding screen reader module outputs
speech to describe the focused element at the virtual cursor’s lo-
cation. Combined, these enhancements led to increased speed and
accuracy of navigation and understanding tasks for BLV program-
mers.

Recently, Stefik et al. [30] created Quorum Blocks, with an ac-
cessible block-based editor (and impressive contributions beyond
in the field of accessible graphics output which are beyond the
scope of this paper). This paper produced a new block-based editor
specifically designed to be accessible to the visually impaired via
screen-readers, which took several ideas from previous research
and also from frame-based editing which we will consider next.

4.3 Frame-based editing
Frame-based editing is designed to combine the strengths of block-
based editing and text-based editing to provide improved error
reduction and faster program manipulation in text-like program-
ming languages[13]. We believe that frame-based editing provides
a solid foundation upon which to build accessible program editors.
The frame-based editing paradigm is text-like, enabling harmonious
first-class integration with speech synthesis, and keyboard driven,
meaning that manipulation interactions are more accessible for
BLV users.

Because in frame-based editing the interface presents an AST-
like representation of the program structure, not program text, a
frame-based editor is better able to refine the presentation of pro-
gram code for an auditory interface paradigm, even if those same
refinements are not represented in the visual interface. Addition-
ally, the “frame cursor” in the frame-based paradigm — used for
insertion and manipulation of syntax nodes — provides a locus of
focus for the user, somewhat analogous to the virtual cursor later
added to Blockly [21], which helps users understand what type
of manipulation actions are available, where their manipulation
actions will manifest, and affords an opportunity to present the
code differently than when using the text cursor to do detailed
editing of program statements.

Furthermore, the frame-based paradigm supports a rich graphical
interface which we believe can run in-tandem with a rich auditory
first interface and enable equitable collaboration between BLV and
sighted collaborators.

5 Conclusion
Screen readers read what is on the screen, but even when applica-
tions correctly permit this, the screen-based presentation may not
suit the task at hand. For programming learners we believe that
we can and should do better. Separating program structure from
its representation—as in block-based, frame-based and structure
editing—provides an opportunity to create first-class auditory inter-
faces with greater affordances for the ephemeral and linear nature
of audio. Careful design consideration should be given to ordering
and wording of the audio representation of code, rather than just
reading out the textual syntax presentation.

Keyboard-based manipulation of the AST, without the need to
type out all syntax, allows for a more accessible input. Keyboards
are generally more accessible by users with all kinds of impairments
than mice, which involve careful and precise aiming of the cursor
that is not possible by many people. The keyboard entry in systems
such as frame-based editors can also reduce the amount of syntax
that must be memorised and the amount of typing required to
translate intent to program code, which is both more accessible and
potentially faster for learners.

In a frame-based editor, specifically, the user will not need to
manage whitespace or punctuation and will need to use fewer
keystrokes to insert code. In future work we will explore the suit-
ability of frame-based editors as a foundation to build a “born-
accessible” program editor with first-class audio presentation and
keyboard driven interactions.

References
[1] Khaled Albusays and Stephanie Ludi. 2016. Eliciting programming challenges

faced by developers with visual impairments: exploratory study. In Proceedings
of the 9th International Workshop on Cooperative and Human Aspects of Software
Engineering. ACM, 82–85. doi:10.1145/2897586.2897616

[2] Khaled Albusays, Stephanie Ludi, and Matt Huenerfauth. 2017. Interviews and
Observation of Blind Software Developers at Work to Understand Code Nav-
igation Challenges. In Proceedings of the 19th International ACM SIGACCESS
Conference on Computers and Accessibility . 91–100. doi:10.1145/3132525.3132550

[3] Ameer Armaly, Paige Rodeghero, and Collin McMillan. 2018. AudioHighlight:
Code Skimming for Blind Programmers. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 206–216. doi:10.1109/ICSME.
2018.00030

[4] Suzanne P. Balik, Sean P. Mealin, Matthias F. Stallmann, Robert D. Rodman,
Michelle L. Glatz, and Veronica J. Sigler. 2014. Including blind people in computing
through access to graphs. In Proceedings of the 16th International ACM SIGACCESS
Conference on Computers & Accessibility (Rochester, New York, USA) (ASSETS
’14). Association for Computing Machinery, New York, NY, USA, 91–98. doi:10.
1145/2661334.2661364

[5] Brett A. Becker. 2021. What does saying that ’programming is hard’ really say,
and about whom? Commun. ACM 64, 8 (July 2021), 27–29. doi:10.1145/3469115

[6] A. Begel and S.L. Graham. 2005. Spoken programs. In 2005 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC’05). 99–106. doi:10.
1109/VLHCC.2005.58

[7] Olutayo Falase, Alexa F. Siu, and Sean Follmer. 2019. Tactile Code Skimmer: A Tool
to Help Blind Programmers Feel the Structure of Code. In The 21st International
ACM SIGACCESS Conference on Computers and Accessibility. ACM, 536–538.
doi:10.1145/3308561.3354616

[8] Chris Fleizach and Jeffrey P. Bigham. 2024. System-class Accessibility: The
architectural support for making a whole system usable by people with disabilities.
Queue 22, 5 (Nov. 2024), 28–39. doi:10.1145/3704627

[9] Mark Guzdial. 2010. Why is it so hard to learn to program. Making Software:
What Really Works, and Why We Believe It. O’Reilly Media (2010), 111–124.

[10] Sayed Kamrul Hasan and Terje Gjøsæter. 2021. Screen reader accessibility study
of interactive maps. In International Conference on human-computer interaction.
Springer, 232–249.

[11] Felienne Hermans, Alaaeddin Swidan, and Efthimia Aivaloglou. 2018. Code
phonology: an exploration into the vocalization of code. In Proceedings of the
26th Conference on Program Comprehension (Gothenburg, Sweden) (ICPC ’18).
Association for Computing Machinery, New York, NY, USA, 308–311. doi:10.

https://doi.org/10.1145/2897586.2897616
https://doi.org/10.1145/3132525.3132550
https://doi.org/10.1109/ICSME.2018.00030
https://doi.org/10.1109/ICSME.2018.00030
https://doi.org/10.1145/2661334.2661364
https://doi.org/10.1145/2661334.2661364
https://doi.org/10.1145/3469115
https://doi.org/10.1109/VLHCC.2005.58
https://doi.org/10.1109/VLHCC.2005.58
https://doi.org/10.1145/3308561.3354616
https://doi.org/10.1145/3704627
https://doi.org/10.1145/3196321.3196355

Programming Education for Blind and Low Vision Users: Beyond Reading the Screen Koli Calling ’25, November 11–16, 2025, Koli, Finland

1145/3196321.3196355
[12] Apple Inc. [n. d.]. Apple Human Interface Guidelines. https://web.archive.

org/web/20250613135358/https://developer.apple.com/design/human-interface-
guidelines/

[13] Michael Kölling, Neil CC Brown, and Amjad Altadmri. 2017. Frame-based editing.
Journal of Visual Languages and Sentient Systems 3 (2017), 40–67.

[14] Stephanie Ludi. 2015. Position paper: Towards making block-based programming
accessible for blind users. In 2015 IEEE Blocks and Beyond Workshop (Blocks and
Beyond). 67–69. doi:10.1109/BLOCKS.2015.7369005

[15] Andrew Luxton-Reilly. 2016. Learning to Program is Easy. In Proceedings of the
2016 ACM Conference on Innovation and Technology in Computer Science Education
(Arequipa, Peru) (ITiCSE ’16). Association for Computing Machinery, New York,
NY, USA, 284–289. doi:10.1145/2899415.2899432

[16] Michele C. McDonnall, Anne Steverson, Rachael Sessler Trinkowsky, and Ka-
terina Sergi and. 2024. Assistive technology use in the workplace by people
with blindness and low vision: Perceived skill level, satisfaction, and challenges.
Assistive Technology 36, 6 (2024), 429–436. doi:10.1080/10400435.2023.2213762
PMID: 37171786.

[17] Sean Mealin and Emerson Murphy-Hill. 2012. An exploratory study of blind
software developers. In 2012 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). 71–74. doi:10.1109/VLHCC.2012.6344485

[18] Lauren R. Milne and Richard E. Ladner. 2018. Blocks4All: Overcoming Accessi-
bility Barriers to Blocks Programming for Children with Visual Impairments. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1–10. doi:10.1145/3173574.3173643

[19] Aboubakar Mountapmbeme and Stephanie Ludi. 2020. Investigating Challenges
Faced by Learners with Visual Impairments using Block-Based Programming/Hy-
brid Environments. In Proceedings of the 22nd International ACM SIGACCESS
Conference on Computers and Accessibility (Virtual Event, Greece) (ASSETS ’20).
Association for Computing Machinery, New York, NY, USA, Article 73, 4 pages.
doi:10.1145/3373625.3417998

[20] Aboubakar Mountapmbeme and Stephanie Ludi. 2021. How Teachers of the
Visually Impaired Compensate with the Absence of Accessible Block-Based
Languages. In Proceedings of the 23rd International ACM SIGACCESS Conference
on Computers and Accessibility (Virtual Event, USA) (ASSETS ’21). Association
for Computing Machinery, New York, NY, USA, Article 4, 10 pages. doi:10.1145/
3441852.3471221

[21] Aboubakar Mountapmbeme, Obianuju Okafor, and Stephanie Ludi. 2022. Ac-
cessible Blockly: An Accessible Block-Based Programming Library for People
with Visual Impairments. In Proceedings of the 24th International ACM SIGAC-
CESS Conference on Computers and Accessibility (Athens, Greece) (ASSETS ’22).
Association for Computing Machinery, New York, NY, USA, Article 19, 15 pages.
doi:10.1145/3517428.3544806

[22] Maulishree Pandey, Steve Oney, and Andrew Begel. 2024. Towards Inclusive
Source Code Readability Based on the Preferences of Programmers with Visual
Impairments. In Proceedings of the CHI Conference on Human Factors in Computing
Systems. 1–18. doi:10.1145/3613904.3642512

[23] The GNOME Project. [n. d.]. GNOME Human Interface Guidelines. https://web.
archive.org/web/20250613135249/https://developer.gnome.org/hig/

[24] TV Raman. 1996. Emacspeak—a speech interface. In Proceedings of the SIGCHI
conference on Human factors in computing systems. 66–71.

[25] T. V. Raman. 1997. Auditory User Interfaces. Springer US. doi:10.1007/978-1-4615-
6225-2

[26] Prakash Sankhi and Frode Eika Sandnes. 2022. A glimpse into smartphone screen
reader use among blind teenagers in rural Nepal. Disability and Rehabilitation:
Assistive Technology 17, 8 (2022), 875–881.

[27] Emmanuel Schanzer, Sina Bahram, and Shriram Krishnamurthi. 2020. Adapting
Student IDEs for Blind Programmers. In Proceedings of the 20th Koli Calling
International Conference on Computing Education Research (Koli, Finland) (Koli
Calling ’20). Association for Computing Machinery, New York, NY, USA, Article
23, 5 pages. doi:10.1145/3428029.3428051

[28] Ather Sharif, Venkatesh Potluri, Jazz R. X. Ang, Jacob O. Wobbrock, and Jennifer
Mankoff. 2024. Touchpad Mapper: Exploring Non-Visual Touchpad Interactions
for Screen-Reader Users. In Proceedings of the 21st International Web for All Con-
ference (Singapore, Singapore) (W4A ’24). Association for Computing Machinery,
New York, NY, USA, 42–44. doi:10.1145/3677846.3677867

[29] Kristen Shinohara and Jacob O. Wobbrock. 2016. Self-Conscious or Self-
Confident? A Diary Study Conceptualizing the Social Accessibility of Assistive
Technology. ACM Trans. Access. Comput. 8, 2, Article 5 (Jan. 2016), 31 pages.
doi:10.1145/2827857

[30] Andreas Stefik, Willliam Allee, Gabriel Contreras, Timothy Kluthe, Alex Hoffman,
Brianna Blaser, and Richard Ladner. 2024. Accessible to Whom? Bringing Accessi-
bility to Blocks. In Proceedings of the 55th ACM Technical Symposium on Computer
Science Education V. 1 (Portland, OR, USA) (SIGCSE 2024). Association for Com-
puting Machinery, New York, NY, USA, 1286–1292. doi:10.1145/3626252.3630770

[31] Andreas Stefik and Ed Gellenbeck. 2009. Using spoken text to aid debugging: An
empirical study. In 2009 IEEE 17th International Conference on Program Compre-
hension. 110–119. doi:10.1109/ICPC.2009.5090034

[32] Andreas Stefik, Andrew Haywood, Shahzada Mansoor, Brock Dunda, and Daniel
Garcia. 2009. SODBeans. In 2009 IEEE 17th International Conference on Program
Comprehension. 293–294. doi:10.1109/ICPC.2009.5090064

[33] Andreas Stefik and Susanna Siebert. 2013. An empirical investigation into pro-
gramming language syntax. ACM Transactions on Computing Education (TOCE)
13, 4 (2013), 1–40.

[34] Dilawar Shah Zwakman, Debajyoti Pal, and Chonlameth Arpnikanondt. 2021.
Usability evaluation of artificial intelligence-based voice assistants: The case of
Amazon Alexa. SN Computer Science 2, 1 (2021), 28.

https://doi.org/10.1145/3196321.3196355
https://web.archive.org/web/20250613135358/https://developer.apple.com/design/human-interface-guidelines/
https://web.archive.org/web/20250613135358/https://developer.apple.com/design/human-interface-guidelines/
https://web.archive.org/web/20250613135358/https://developer.apple.com/design/human-interface-guidelines/
https://doi.org/10.1109/BLOCKS.2015.7369005
https://doi.org/10.1145/2899415.2899432
https://doi.org/10.1080/10400435.2023.2213762
https://doi.org/10.1109/VLHCC.2012.6344485
https://doi.org/10.1145/3173574.3173643
https://doi.org/10.1145/3373625.3417998
https://doi.org/10.1145/3441852.3471221
https://doi.org/10.1145/3441852.3471221
https://doi.org/10.1145/3517428.3544806
https://doi.org/10.1145/3613904.3642512
https://web.archive.org/web/20250613135249/https://developer.gnome.org/hig/
https://web.archive.org/web/20250613135249/https://developer.gnome.org/hig/
https://doi.org/10.1007/978-1-4615-6225-2
https://doi.org/10.1007/978-1-4615-6225-2
https://doi.org/10.1145/3428029.3428051
https://doi.org/10.1145/3677846.3677867
https://doi.org/10.1145/2827857
https://doi.org/10.1145/3626252.3630770
https://doi.org/10.1109/ICPC.2009.5090034
https://doi.org/10.1109/ICPC.2009.5090064

	Abstract
	1 Introduction
	2 Background
	2.1 Program code
	2.2 Human levels of vision
	2.3 Screen readers
	2.4 Audio-first interfaces
	2.5 Historical patterns

	3 Reading the screen is the wrong approach
	3.1 Speech ordering
	3.2 Invisible punctuation
	3.3 Indentation
	3.4 Confusing values
	3.5 Different modes of reading
	3.6 Different code style preferences

	4 Audio should come from the AST, not text
	4.1 Mixed visual-ability collaboration
	4.2 Accessible block-based editing
	4.3 Frame-based editing

	5 Conclusion
	References

